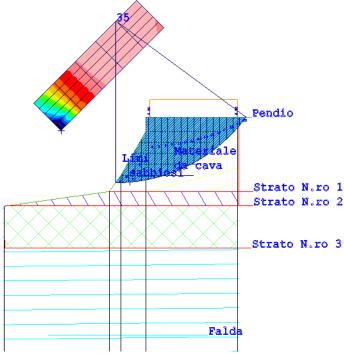
REGIONE SICILIANA

LIBERO CONSORZIO COMUNALE DI ENNA già PROVINCIA REGIONALE DI ENNA

LAVORI DI RIFUNZIONALIZZAZIONE DELLA SP.7/B, COMPRESA REALIZZAZIONE DI UN VIADOTTO, IN VARIANTE, AL KM. 7+134, MIRATI ALLA RIAPERTURA AL TRANSITO

PROGETTO ESECUTIVO 1° STRALCIO


Elaborato:	Classe:	Data :
A.4	Relazioni	10/04/2019
Scala:	Oggetto: CALCOLO DI VERIFICA DI STAB DEI RILEVATI IN TERRA RINFOI	
	Dadatta da. \\/:ata:IDIID.	

	Redatto da:	Visto II R.U.P.:
l		
l		

RELAZIONE DI CALCOLO

La presente relazione è relativa alla verifica delle opere in terra rinforzata, previste in progetto per la ricostituzione e stabilizzazione dei tratti del corpo stradale laddove si sono verificati dissesti

NORMATIVA DI RIFERIMENTO

La normativa cui viene fatto riferimento nelle fasi di calcolo, verifica e progettazione è costituita dalle *Norme Tecniche per le costruzioni* emanate con il *D.M. 14/01/2008* pubblicato nel suppl. 30 G.U. 29 del 4/01/2008, nonché la Circolare del Ministero Infrastrutture e Trasporti del 2 Febbraio 2009, n. 617 "*Istruzioni per l'applicazione delle nuove norme tecniche per le costruzioni*". Le verifiche sono state condotte rispetto agli stati limite di tipo geotecnico (GEO) applicando alle caratteristiche geotecniche del terreno i coefficienti parziali del gruppo M2 (Tab. 6.2.II NTC).

TOTALITA DI STABILITÀ

I fenomeni franosi possono essere ricondotti alla formazione di una superficie di rottura lungo la quale le forze, che tendono a provocare lo scivolamento del pendio, non risultano equilibrate dalla resistenza a taglio del terreno lungo tale superficie.

La verifica di stabilità del pendio si riconduce alla determinazione di un coefficiente di sicurezza, relativo ad una ipotetica superficie di rottura, pari al rapporto tra la resistenza al taglio disponibile e la resistenza al taglio mobilitata.

Suddiviso il pendio in un determinato numero di conci di uguale ampiezza, per ogni concio si possono individuare:

- a) il peso;
- b) la risultante delle forze esterne agenti sulla superficie;
- c) le forze inerziali orizzontali e verticali;
- d) le reazioni normali e tangenziali mutue tra i conci;
- e) le reazioni normali e tangenziali alla base dei conci;
- f) le pressioni idrostatiche alla base.

Sotto l'ipotesi che la base di ciascun concio sia piana e che lungo la superficie di scorrimento valga il criterio della rottura alla *Mohr–Coulomb*, che correla tra loro le reazioni tangenziali e normali alla base, le incognite, per la determinazione dello equilibrio di ogni concio, risultano essere le reazioni laterali, i loro punti di applicazione, e la reazione normale alla base.

Per la determinazione di tutte le incognite, le equazioni di equilibrio risultano insufficienti, per cui il problema della stabilità dei pendii è, in via rigorosa, staticamente indeterminato. La risoluzione del problema va perseguita introducendo ulteriori condizioni sugli sforzi agenti sui conci. Tali ulteriori ipotesi differenziano sostanzialmente i diversi metodi di calcolo.

I casi in cui non è possibile stabilire un coefficiente di sicurezza per il pendio vengono segnalati attraverso le seguenti stringhe:

- SCARTATA : coefficiente di sicurezza minore di 0,1;

- NON CONV. : convergenza del metodo di calcolo non ottenuta;

- ELEM.RIG. : intersezione della superficie di scivolamento con un corpo rigido.

METODO DI BELL

L'ipotesi alla base del metodo consiste nell'imporre una specifica distribuzione delle tensioni normali lungo la superficie di scivolamento.

Definite le quantità:

$$-f = \operatorname{sen}\left(2 \cdot pg \cdot \frac{xb - xi}{xb - xa}\right)$$

-pg = costante pi greca

-xb = ascissa punto di monte del pendio

-xa = ascissa punto di valle del pendio

-xi = ascissa parete di monte del pendio

- Kx, Ky = coeff. sismici orizzontale e verticale

- xci = ascissa punto medio alla base del concio i

- zci = ordinata punto medio alla base del concio i

- xgi, ygi = ascissa e ordinata baricentro concio i

- xmi, ymi = ascissa e ordinata punto applicazione risultante forze esterne

il coefficiente di sicurezza F scaturisce come parametro contenuto nei coefficienti del sistema di equazioni:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \times \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix} = \begin{bmatrix} a_{14} \\ a_{24} \\ a_{34} \end{bmatrix}$$

dove:

$$\begin{split} a_{11} &= (\mathbf{1} - Kx) \cdot \left(\sum_{i} W_{i} \cdot \cos^{2}\left(a_{i}\right) \cdot \tan(fi) - F \cdot \sum_{i} W_{i} \sin(a_{i}) \cos(a_{i}) \right) \\ a_{12} &= \sum_{i} f \cdot b \cdot \tan(fi) - F \cdot \sum_{i} f \cdot b \cdot \tan(a_{i}) \\ a_{13} &= \sum_{i} c_{i} \cdot b \\ a_{14} &= \sum_{i} u_{i} \cdot b \cdot \tan(fi) + F(Kx \cdot \sum_{i} W_{i} - Q_{i} \\ a_{21} &= (\mathbf{1} - Ky) \cdot \left(\sum_{i} W_{i} \cdot \sin(a_{i}) \cos(a_{i}) \cdot \tan(fi) + F \cdot \sum_{i} W_{i} \cos^{2}\left(a_{i}\right) \right) \\ a_{22} &= \sum_{i} f \cdot b \cdot \tan(a_{i}) + F \cdot \sum_{i} f \cdot b \\ a_{23} &= \sum_{i} c_{i} \cdot b \cdot \tan(a_{i}) \cdot \tan(fi) + F \left[(\mathbf{1} - Ky) \cdot \sum_{i} W_{i} + P_{i} \right] \\ a_{31} &= (\mathbf{1} - Ky) \cdot \left\{ \sum_{i} \left(W_{i} \cdot \cos^{2}\left(a_{i}\right) \cdot \tan(fi) \right) \cdot zci - \left[\sum_{i} \left(W_{i} \cos^{2}\left(a_{i}\right) \right) \cdot xci + \sum_{i} \left(W_{i} \sin(a_{i}) \cos(a_{i}) \right) \cdot zci \right] \right\} \\ a_{32} &= \sum_{i} \left(f \cdot b \cdot \tan(a_{i}) \right) \cdot zci - \sum_{i} \left(f \cdot b \cdot \tan(a_{i}) \right) \cdot xci - F \cdot \left[\sum_{i} \left(f \cdot b \cdot \tan(a_{i}) \right) \cdot zci + \sum_{i} \left(f \cdot b \cdot xci \right) \right] \\ a_{33} &= \sum_{i} \left(ci \cdot b \right) \cdot zci - \sum_{i} \left(ci \cdot b \cdot \tan(a_{i}) \right) \cdot xci \\ a_{34} &= \sum_{i} \left(ui \cdot b \cdot \tan(fi) \right) \cdot zci - \sum_{i} \left(ui \cdot b \cdot \tan(a_{i}) \right) \cdot xci + F \cdot Kx \sum_{i} W_{i} \cdot ygi - \left(\mathbf{1} - Ky \right) \sum_{i} W_{i} \cdot xgi - Q_{i} \cdot ymi - P_{i} \cdot xmi \\ a_{34} &= \sum_{i} \left(ui \cdot b \cdot \tan(fi) \right) \cdot zci - \sum_{i} \left(ui \cdot b \cdot \tan(a_{i}) \right) \cdot xci + F \cdot Kx \sum_{i} W_{i} \cdot ygi - \left(\mathbf{1} - Ky \right) \sum_{i} W_{i} \cdot xgi - Q_{i} \cdot ymi - P_{i} \cdot xmi \\ a_{34} &= \sum_{i} \left(ui \cdot b \cdot \tan(fi) \right) \cdot zci - \sum_{i} \left(ui \cdot b \cdot \tan(a_{i}) \right) \cdot xci + F \cdot Kx \sum_{i} W_{i} \cdot ygi - \left(\mathbf{1} - Ky \right) \sum_{i} W_{i} \cdot xgi - Q_{i} \cdot ymi - P_{i} \cdot xmi \\ a_{34} &= \sum_{i} \left(ui \cdot b \cdot \tan(fi) \right) \cdot zci - \sum_{i} \left(ui \cdot b \cdot \tan(a_{i}) \right) \cdot xci + F \cdot Kx \sum_{i} W_{i} \cdot ygi - \left(\mathbf{1} - Ky \right) \sum_{i} W_{i} \cdot xgi - Q_{i} \cdot ymi - P_{i} \cdot xmi \\ a_{34} &= \sum_{i} \left(ui \cdot b \cdot \tan(fi) \right) \cdot zci - \sum_{i} \left(ui \cdot b \cdot \tan(a_{i}) \right) \cdot xci + F \cdot Kx \sum_{i} W_{i} \cdot ygi - \left(\mathbf{1} - Ky \right) \sum_{i} W_{i} \cdot xgi - Q_{i} \cdot ymi - P_{i} \cdot xmi \\ a_{34} &= \sum_{i} \left(ui \cdot b \cdot \tan(fi) \right) \cdot zci - \sum_{i} \left(ui \cdot b \cdot \tan(fi) \right) \cdot xci + F \cdot Kx \sum_{i} W_{i} \cdot ygi - \left(\mathbf{1} - Ky \right) \sum_{i} W_{i} \cdot xgi - Q_{i} \cdot ymi - P_{i} \cdot xmi \\ a_{34} &= \sum_{i} \left(ui \cdot b \cdot \tan(fi) \right) \cdot xci - \sum_{i} \left(ui \cdot b \cdot \tan(fi) \right) \cdot xci + \sum_{i} \left($$

• RINFORZO MEDIANTE GEOGRIGLIE

La geogriglia, inserita all'interno del terreno, determina un effetto comparabile a quello di uno sforzo concentrato lungo il piano di posa del rinforzo.

Il contributo alla stabilità della scarpata viene valutato come un incremento della resistenza a taglio del terreno lungo la superficie di scorrimento, pari alla componente tangente alla superficie della resistenza ammissibile della geogriglia:

$$Tgg = Fgg \times cos(Acn - Agg)$$

essendo:

- Tgg = Contributo di resistenza al taglio della geogriglia su ogni concio
- Fgg = Forza di trazione ammissibile per la geogriglia
- Acn = Angolo alla base del concio
- Agg = Angolo che la geogriglia forma con l'orizzontale

La verifica allo sfilamento della geogriglia viene effettuata sulla base della lunghezza di ancoraggio del rinforzo oltre la superficie di scorrimento della scarpata:

$$CoefS = Lgg \times Agt \times Sgmv / Fgg$$

essendo:

- CoefS = Coefficiente di sicurezza allo sfilamento
- Lgg = Lunghezza di ancoraggio della geogriglia
- Agt = Coefficiente di attrito geogriglia-terreno
- Sgmv = Tensione verticale media nel tratto di ancoraggio
- Fgg = Forza di trazione ammissibile per la geogriglia

Numero conci : Numero di conci in cui è suddiviso il pendio

Coefficiente sismico orizzontale : Moltiplicatore del peso per la valutazione dell'inerzia

sismica orizzontale

Coefficiente sismico verticale : Moltiplicatore del peso per la valutazione dell'inerzia

sismica verticale

Ascissa punto passaggio cerchio (m) : Ascissa del punto di passaggio imposto per tutti i cerchi

di scorrimento

Ordinata punto passaggio cerchio (m) : Ordinata del punto di passaggio imposto per tutti i

cerchi di scorrimento

Ascissa polo (m) : Ascissa del primo punto centro del cerchio di

scorrimento

Ordinata polo (m) : Ordinata del primo punto centro del cerchio di

scorrimento

Numero righe maglia : Numero di punti lungo una linea verticale, centri di

superfici di scorrimento

Numero colonne maglia : Numero di punti lungo una linea orizzontale, centri di

superfici di scorrimento

Passo direzione 'X' (m) : Distanza in orizzontale tra i centri delle superficie di

scorrimento circolari

Passo direzione 'Y' (m) : Distanza in verticale tra i centri delle superficie di

scorrimento circolari

La simbologia usata in tabella va interpretata secondo le descrizioni dei campi riportate di seguito:

Str. N.ro : Numero dello strato

Descrizione strato : Descrizione sintetica dello strato

Coesione : Coesione

Ang. attr. : Angolo di attrito interno del terreno dello strato in esame

Densità : Peso specifico del terreno in situ

D. Saturo : Peso specifico del terreno saturo

Vert. N.ro : Numero del vertice della poligonale che definisce lo strato

Ascissa / Ordinata : Coordinate dei vertici dello strato

La simbologia usata in tabella va interpretata secondo le descrizioni dei campi riportate di seguito:

Asc. in. : Ascissa iniziale dell'elemento

Ord. in. : Ordinata iniziale dell'elemento

Asc. fin. : Ascissa finale dell'elemento

Ord. fin. : Ordinata finale dell'elemento

Taglio Norm. : Massimo taglio resistente opposto dall'elemento se intercettato

ortogonalmente al proprio asse dalla superficie di scorrimento

Taglio Tang. : Massimo taglio resistente opposto dall'elemento se intercettato

parallelamente al proprio asse dalla superficie di scorrimento

La simbologia usata in tabella va interpretata secondo le descrizioni dei campi riportate di seguito:

Asc. in. : Ascissa iniziale della geogriglia

Ord. in. : Ordinata iniziale della geogriglia

Asc. fin. : Ascissa finale della geogriglia

Ord. fin. : Ordinata finale della geogriglia

Sforzo max. : Massimo sforzo normale resistente opposto dall'elemento se intercettato

dalla superficie di scorrimento

La tabella di seguito esposta riporta le forze scambiate tra i vari conci secondo le teorie selezionate (*Bishop*, *Jambu* e *Bell*). La simbologia è da interpretarsi come appresso descritto:

Con. sx : Concio a sinistra della superficie di separazione tra i due conci

Con. dx : Concio a destra della superficie di separazione tra i due conci

F.or. : Risultante delle forze (orizzontali) scambiate tra i due conci

ortogonalmente alla superficie (verticale) di separazione

F.vert. : Risultante delle forze (verticali) scambiate tra i due conci

parallelamente alla superficie (verticale) di separazione

DATI GENERALI STABILITA' PENDIO

DATI GENERALI	DI VERIFICA
Vita Nominale (Anni)	50
Classe d' Uso	SECONDA
Longitudine Est (Grd)	14,422
Latitudine Nord (Grd)	37,607
Categoria Suolo	С
Coeff. Condiz. Topogr.	1,000
Probabilita' Pvr	0,100
Periodo di Ritorno Anni	475,000
Accelerazione Ag/g	0,094
Fattore Stratigrafia 'S'	1,500
Coeff. Sismico Kh	0,000
Coeff. Sismico Kv	0,000
Numero conci :	20
Numero elementi rigidi:	0
Tipo Superficie di rottura :	CIRCOLARE PASSANTE PER UN PUNTO
COORDINATE PUNTO DI PASSA	
Ascissa pto passaggio cerchio (m):	5,610
Ordinata pto passaggio cerchio (m):	10,540
PARAMETRI MAGLIA DEI CENTRI PER S	UPERFICI DI ROTTURA CIRCOLARI
Ascissa Polo (m):	0,890
Ordinata Polo (m):	14,080
Numero righe maglia :	6,0
Numero colonne maglia :	6,0
Passo direzione 'X' (m):	2,00
Passo direzione 'Y' (m):	0,53
Rotazione maglia (Grd):	45,0
Peso specifico dell' acqua (t/mc) :	1,000
DATI GENERALI PER IL CALCO	
Coefficiente allo sfilamento geogr:	1,00
Coefficiente attrito geogr-terreno:	1,00
COEFFICIENTI PARZIALI GEO	
Tangente Resist. Taglio	1,25
Peso Specifico	1,00
Coesione Efficace (c'k)	1,25
Resist. a taglio NON drenata (cuk)	1,40
Coefficiente R2	1,10

		DATI GEO	TECNICI E S	TRATIGRAI	FIA			
Str. N.ro	Descrizione Strato	Coesione t/mq	Ang.attr Grd	Densita' t/mc	D.Saturo t/mc	Vert N.ro	Ascissa (m)	Ordinata (m)
	Profilo del pendio					1 2 3 4 5 6	-3,00 4,20 5,00 6,70 6,70 13,00	8,88 9,89 11,00 14,00 15,00
1	Materiale da cava	0,000	30,00	1,900	2,100	1 2	4,22 13,10	9,90 9,90
2	Limi sabbiosi	3,000	22,00	2,040	2,040	1 2	-2,95 13,10	8,90 8,90
3	Argille siltose	3,800	24,00	1,980	1,980	1	-3,00	6,00

	DATI GEOTECNICI E STRATIGRAFIA													
Str.	Descrizione Strato	Coesione	Ang.attr	Densita'	D.Saturo	Vert	Ascissa	Ordinata						
N.ro		t/mq	Grd	t/mc	t/mc	N.ro	(m)	(m)						
						2	13,00	6,00						
4	Limi argillosi	2,700	25,00	1,930	1,930									

DATI FORZE DISTRIBUITE VERTICALI													
Vert.	Asc. in.	Int. iniz.	Asc. fin	Int. fin.									
N.ro	(m)	(t/ml)	(m)	(t/ml)									
1	7,00	4,000	13,00	4,000									

		DATI ELE	MENTI RESIST	TENTI A TAGLI	0	
Elem.	Asc. in.	Ord. in.	Asc. fin.	Ord. fin.	Taglio Norm	Taglio Tang
N.ro	(m)	(m)	(m)	(m)	(t)	(t)
1	5,00	0,00	5,00	11,00	11,16	11,16

_	DATI GEOGRIGLIE													
	Elem.	Asc. in.	Ord. in.	Asc. fin.	Ord. fin.	Sforzo max								
	N.ro	(m)	(m)	(m)	(m)	(t)								
	1	5,00	11,00	10,00	11,00	10,00								
	2	5,48	11,75	10,50	11,75	10,00								
	3	5,84	12,50	10,84	12,50	10,00								
	4	6,24	13,25	11,24	13,25	10,00								
	5	6,73	14,00	11,90	14,00	10,00								

					COEFFICIEN	TI DI SICUREZZ	A DEL PENDIO				
	N.ro Cerch	io critico : 35									
Cerchi	Xc	Yc	Rc	Bishop	Jambu	Bell	MP - Fx = C	MP - Fx=sin	MP-Fx=sin/2	Sarma	Spencer
N.ro	(m)	(m)	(m)	•							·
1	0,9	14,1	5,9			13,625					
2	2,3	15,5	6,0			4,7914					
3	3,7	16,9	6,6			2,7005					
4	5,1	18,3	7,8			1,9308					
5	6,5	19,7	9,2			1,8926					
6	8,0	21,2	10,9			2,9042					
7	0,5	14,5	6,4			13,6771					
8	1,9	15,9	6,5			4,6519					
9	3,3	17,3	7,1			2,689					
10	4,8	18,7	8,2			1,8939					
11	6,2	20,1	9,6			2,0931					
12	7,6	21,5	11,2			2,7028					
13	0,1	14,8	7,0			10,8281					
14	1,6	16,2	7,0			4,7407					
15	3,0	17,7	7,6			2,6655					
16	4,4	19,1	8,6			1,868					
17	5,8	20,5	9,9			2					
18	7,2	21,9	11,5			2,5295					
19	-0,2	15,2	7,5			9,7364					
20	1,2	16,6	7,5			4,6976					
21	2,6	18,0	8,1			2,6491					
22	4,0	19,4	9,1			1,8434					
23	5,4	20,9	10,3			1,9182					
24	6,8	22,3	11,8			2,3401					
25	-0,6	15,6	8,0			9,0137					
26 27	0,8	17,0 18,4	8,0			4,6852					
27 28	2,2 3,6	19,8	8,6 9,5			2,6359 2,1487					
28 29	5,0	21,2	9,5 10,7			1,8088					
30	5,0 6,5	21,2	10,7			2,1979					
30	-1,0	16,0	8,5			8,53					
32	0,4	17,4	8,6			4,7107					
33	1,8	18,8	9,1			2,625					
34	3,3	20,2	9,1			2,025					
35	4,7	21,6	11,1			1,7462					
36	6,1	23,0	12,5			2,0913					
30	0,1	23,0	12,5			2,0913	l	l			

	DEATION MUTUE EDA CONCI																
	REAZIONI MUTUE FRA CONCI																
								Superfi	cie N.ro: 1								
		BISH	ЮР	JAN	1BU	BE	LL	MP -	Fx= C	MP - F	x = SIN	N MP-Fx = SIN/2 SARMA SPENCER				NCER	
Conc.	Conc.	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert.
SX	dx	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
	1					0	0										

	REAZIONI MUTUE FRA CONCI																
								Superf	icie N.ro:								
		BISI	HOP	JAN	ИBU	BE	LL	MP -	Fx= C	MP - F	x = SIN	MP-Fx	= SIN/2	SARMA		SPE	NCER
Conc.	Conc.	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert	F.or.	F.vert.
SX	dx	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)	(t)
1	2					.1	0										
2	3					.4	0										
3	4					.7	0										
4	5					1	0										
5	6					1.3	2										
6	7					1.5	3										
7	8					1.7	5										
8	9					1.7	6										
9	10					1.7	7										
10	11					1.6	8										
11	12					1.4	8										
12	13					1.2	7										
13	14					.9	6										
14	15					.7	3										
15	16					.5	1										
16	17					.2	.3										
17	18					2	.9										
18	19					7	1.7										
19	20					-1.2	2.8										
20						-1.1	3.1										

DIGIII	TATI	VEDIE	CHE	GEO	GRIGLIE	=
NIOUL	_ A	VERIE	CHE	$\mathbf{G} = \mathbf{O}$	JUICILLE	=

Superfice N.ro: 1			Superfice N.ro: 1				
Geogr.	Coeff.	Lungh.anc.	Geogr.	Coeff.	Lungh.anc.		
N.ro	Sfilamento	(m)	N.ro	Sfilamento	(m)		
1	1,06	0,70	2	1,11	0,90		
3	1,05	1,10	4	1,06	1,60		
5	1,03	2,70					

	REAZIONI MUTUE FRA CONCI																
Superficie N.ro: 35																	
	BISHOP JAMBU		ИBU	BELL		MP - Fx= C		MP - Fx = SIN		MP-Fx = SIN/2		SARMA		SPENCER			
Conc.	Conc. dx	F.or. (t)	F.vert (t)	F.or. (t)	F.vert (t)	F.or. (t)	F.vert (t)	F.or. (t)	F.vert (t)	F.or. (t)	F.vert (t)	F.or. (t)	F.vert (t)	F.or. (t)	F.vert (t)	F.or. (t)	F.vert. (t)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20					0 0 .2 .4 .7 .9 .9 .8 .4 2 -1 -1.9 -3 -4.2 -5.5 -6.8 -8.1 -9.3 -10.5 -11.2 -10.8	01247 -1.1 -1.6 -2.2 -2.6 -2.9 -3 -3 -2.8 -2.5 -2 -1.35 .4 1.4 2.1 1.6										

RISULTATI VERIFICHE GEOGRIGLIE

Superfice N.ro: 35			Superfice N.ro: 35				
Geogr.	Coeff.	Lungh.anc.	Geogr.	Coeff.	Lungh.anc.		
N.ro	Sfilamento	(m)	N.ro	Sfilamento	(m)		
1	1,06	0,70	2	1,11	0,90		
3	1,05	1,10	4	1,06	1,60		
5	1,03	2,70					